UNIT 6481	Module 1	1.1.4	Linear Motion	• DERIVING THE EQUATIONS OF MOTION 1
UNIT G481 • Candidat • De str • Se ac v = u • Ap inc grv • Ex Ar • De fa	Module 1 tes should be able to : terive the equations of more raight line from a velocity elect and use the equations celeration in a straight line + at $s = \frac{1}{2}(u + v)t$ [pply the equations for consecutivity poly the equations for consecutivity avitational field without the explain how experiments can ristotle's ideas of motion. escribe an experiment to can aving a falling body	1.1.4 tion for for -time grad s of motifies: s = ut + stant acco lies fallin air resis cried out determine	Linear Motion constant acceleration in a aph. fon for constant $\frac{1}{2}at^2$ $v^2 = u^2 + 2as$ eleration in a straight line, ng in the Earth's uniform tance. by Galileo overturned e the acceleration of free	• DERIVING THE EQUATIONS OF MOTION 1 Consider an object moving with an initial velocity (u) which accelerates with a constant acceleration (a) to reach a final velocity (v) after a time (t). The distance moved in this time is (s). This is the velocity-time graph for the motion. $\frac{EQUATION 1}{t}$ Acceleration = gradient of v/t graph $a = (v - u)$ t = u + at
• Ap ex on dii	oply the equations of const plain the motion of an obj e direction and a consta n rection .	tant acce ect due a nt accele	eleration to describe and to a uniform velocity in e ration in a perpendicular	$\frac{EQUATION 2}{Total displacement = average velocity x time}$ $s = \frac{1}{2}(u + v)t$
				© 2008 FXA

UNIT 6481Module 11.1.4Linear Motion
$$\mathcal{E}_{QUATIONS OF MOTION - SUMMARY}$$
2 $\mathcal{E}_{QUATION 3}$ $v = u + at \dots(1)$ and $s = (u + y) t \dots(2)$
 2 $v = u + at \dots(2)$
 2 $v =$

- A train travelling at 20 m s⁻¹ accelerates uniformly at 0.75 m s⁻² for 25 s. Calculate the *distance travelled* by the train in this time.
- The diagram opposite shows a velocity-time graph for two cars, *A* and *B*, which are moving in the same direction over a *40 s* time period.

Car A, travelling at a constant velocity of 40 m s^{-1} , overtakes car B at time, t = 0.

3

In order to catch up with car A, car B immediately accelerates uniformly for 20 s to reach a constant velocity of 50 m s⁻¹.

- (a) The *distance travelled* by car A during the first 20 s.
- (b) Car *B's acceleration* during the first *20 s*.
- (c) The *distance travelled* by car *B* during the first *20 s*.
- (d) The *additional time* taken for car *B* to catch up with car *A*.
- (e) The *total distance* each car will have travelled.

© 2008 FXA

UNIT 6481	Module 1	1.1.4	Linear Motion	• NO	TE ON NON-UNIFORM ACCELERATION 4		
8 A coin is 55 m be air resis as 9.81 (a)	s dropped down a mine share fore hitting the bottom o stance and taking the <i>acco</i> <i>m s⁻²</i> , calculate :) The <i>time taken</i> for the coin) The <i>velocity</i> of the coin	ft and fa f the sho eleration coin to hi on impac	lls through a height of aft. Assuming <i>negligible due to gravity (g)</i> t the bottom. t.	 The <u>EQUATIONS OF MOTION</u> only apply to objects moving with <u>CONSTANT or UNIFORM ACCELERATION</u>. The v/t graph opposite shows the motion of an object which is moving with <u>non-uniform</u> <u>acceleration.</u> 			
9 A stone initial ve and takin Calculate (a)	is projected vertically upv clocity of <i>30 m s⁻¹. Assu</i> ng the <i>acceleration due t</i> e:) The <i>maximum height</i> rec) The <i>total time taken</i> to	vards fro ming <i>air</i> o <i>gravity</i> ached by return t	m the ground with an <i>resistance is negligible</i> (<i>g)</i> as <i>9.81 m s⁻²,</i> the stone. o the ground.		The acceleration at any time is given by the gradient of the v/t graph at that time. To find the acceleration at Any given time : At the time in question, mark a point on the v/t graph. Draw a tangent to the curve at that point. Construct a large right-angled triangle and use it to calculate the gradient.		
 10 The diag velocity-travellin for a tim (a) <i>Desc</i> vehic (b) Use the <i>a</i> vehic (c) Use the <i>s</i> (d) Chec using 	gram opposite shows a -time graph for a vehicle g along a straight road ne of <i>30 s.</i> <i>tribe</i> the motion of the ele. the graph to determine acceleration of the ele over the <i>30 s period.</i> the graph to determine the <i>30 s period.</i> k your answer to part (c) b a suitable equation of mot	$v/m s^{-1}$ 20 16 12 8 4 0 0 0	<i>ement</i> of the vehicle over ating the <i>displacement</i>		Use the procedure outlined above to calculate the acceleration at point P in the v/t graph shown below.		
					© 2008 FXA		

UN	IT G481	Module 1	1.1.4	Linear Motion	•	
•	HOW GJ ARISTO	ALILEO'S EXPERIMENTS C TLE'S IDEAS OF MOTION	VERTURI I	NED	•	
• The Greek philosopher ARISTOTLE thought that a force must act all the time in order to keep an object moving. Our own experience seems to support this idea in that a car, for example, will slow down and eventually stop when the engine is switched off. But, does this happen because the driving force has been switched off? The reality is that the slowing down and stopping occurs because there is an opposing FRICTIONAL FORCE .						
•	Experiments carried out by GALILEO (about 1600 years after Aristotle) showed that Constant force is not needed to maintain motion, but force is needed to :					
	 Start and stop motion, Change the speed of an object, Change the direction of an object. 					
•	<u>GALILEO</u>	<u>'S EXPERIMENTS</u>				
	• Ga th Ha th	lileo simultaneously dropped two e leaning Tower of Pisa and fou e concluded that any two object eir relative weights.	o objects o und that the 's will fall d	f different weight from the top of ey hit the ground at the same time. at the same rate, regardless of		
	• Us ma eq	sing a 'dripping water' clock whicl easure of time, Galileo was able wal distances down a slope from	h counted t to measure rest. His r	he volume of water drips as a the time taken by a ball to travel results showed that the ball		

accelerates as it rolls down the slope and that the greater the slope, the greater is the acceleration. From this, he concluded that an object falling vertically will accelerate.

DETERMINATION OF THE ACCELERATION OF FREE FALL (g) 5

A steel ball-bearing is held by an electromagnet. When the current to the magnet is switched off, the ball is released and the timer is started. The ball strikes and opens a trapdoor which then stops the timer. The time taken (t) for the ball to fall through a given height (h) is recorded. The timing is repeated and an average t-value is calculated.

The procedure is repeated for several different h-values and the results are recorded in the table below :

 $h = ut + \frac{1}{2}gt^2$ And since u = 0, ut = 0

So
$$h = \frac{1}{2}gt^{2}$$

Compare $y = mx + d$

Therefore, plotting a graph of (h) against (t^2) gives a best-fit, straight line through the origin, whose gradient = $\frac{1}{2}g$

=

 $m \, s^{-2}$

© 2008 FX

UNI	T G481	Module 1	1.1.4	Linear Motion		
•	Practice Questions (2)					
1	A helicopter is flying in a straight line at a speed of 20 m s⁻¹ and at a constant height of 180 m . A small object is released from the helicopter and falls to the ground. Assuming air resistance is negligible, calculate :					
	(a)) The <i>time taken</i> for the	object to	reach the ground.		
	(b) The <i>vertical component of velocity</i> of the object when it hits the ground.					
	(c) The <i>horizontal component of velocity</i> of the object when it hits the ground.					
	(d)) The <i>horizontal displacer</i> to reach the ground.	nent of t	he object in the time taken		
2	During a European Champions League match, a free kick was taken by Steven Gerrard and the ball was projected with a velocity of 20 m s⁻¹ at an angle of 35° to the pitch. Assuming that air resistance is negligible, calculate :					
	(a)) The <i>initial vertical and</i> ,	horizonte	al components of velocity.		
	(b)) The <i>time taken</i> for the	ball to re	each its maximum height.		
	(c) The <i>maximum height</i> reached by the ball.					
	(d) The <i>horizontal displacement</i> of the ball in the time taken to return to the ground.					

7

The diagram above shows the path of a ball that is thrown from **point** A to **point** B. The ball reaches its maximum height at **point** H. The ball is thrown with an initial velocity of 25.0 m s⁻¹ at 60° to horizontal. Assume that there is no air resistance.

- (a) (i) Show that the vertical component of the initial velocity is 21.7 m s^{-1} .
 - (ii) Calculate the *time taken* for the ball to reach *point H*.
 - (iii) Calculate the *displacement* from *A* to *B*.
- (b) For the path of the ball shown in the diagram, draw sketch graphs, with labelled axes but without numerical values, to show the variation of :
 - (i) The *vertical component of the ball's velocity* against *time*.
 - (ii) The *distance travelled along its path* against *time*.

(OCR Physics AS - Module 2821 - May 2008)

© 2008 FXA

UNI	T <i>G</i> 481	Module 1	1.1.4	Linear Motion	5	Traffic police investigators use the length of skid marks left on the $ {m 8}$			
•	HOMEWORK QUESTIONS					road by a decelerating vehicle in order to determine whether or not the speed limit has been exceeded.			
1	1 When the brakes are applied in a car which is moving at 40 m s ⁻¹ , the velocity is reduced to 25 m s ⁻¹ over a distance of 140 m. If the deceleration remains constant, what <i>further distance</i> will the car travel before coming to rest?			If the skid marks at the scene of an accident are 52m long and other tests on the road surface show that the skidding car was decelerating at 6.5 m s⁻² , was the car breaking the speed limit of 30 m s⁻¹ ?					
	Sketch a <i>velocity-time</i> graph for the whole motion showing numerical values on the axes.			e motion showing numerical	6	A sandbag is dropped from a height of 180 m , from a helicopter that			
2	Calculate if it is bi block.	e the deceleration of a bu rought <i>to rest</i> after trav	llet initio elling <i>10</i>	lly travelling at 400 m s⁻¹, c m through a wooden		is moving vertically upwards with a velocity of 6 m s ⁻¹ . If air resistance is neglected, calculate : (a) The <i>initial velocity</i> of the sandbag.			
3	A hawk i Mouse di <i>12 m s⁻²</i>	s hovering above a field a irectly below it and dives ² . Calculate :	t a heigh vertically	t of <i>50 m.</i> It sees a with an acceleration of		(b) The <i>final velocity</i> of the sandbag. (c) The <i>time taken</i> for the sandbag to reach the ground.			
	(a) (b)) The hawk's <i>velocity</i> at th) The <i>time taken</i> to reach	ne instan [.] n the mou	t it reaches the mouse. use.	7	An aid parcel is released from a plane flying horizontally at 65 m s⁻¹, at a height of 800 m above the ground.			
4	A train a of 180 s (a) (b) (c)	accelerates steadily from 5. Calculate : 9 The train's <i>acceleration</i> 9 The <i>average velocity</i> of 9 The <i>distance travelled</i> b	<i>4.0 m s</i> the trai	⁻¹ to 24.0 m s ⁻¹ in a time n. ain during the acceleration.		 (a) Calculate the <i>horizontal</i> and <i>vertical</i> components of the parcel's <i>initial velocity</i>. (b) How long does it take for the parcel to reach the ground ? (c) At what <i>horizontal distance</i> from the target should the plane be when the parcel is released ? 			
						© 2008 FXA			

The diagram above shows the path of a tennis ball after passing over the net.

As it passes over the net, it is travelling at a height of 1.20 m. The ball strikes the ground on a line which is 11.9 m from the net.

(a) Assuming air resistance to be negligible,

(i) Show that the *time taken* for the ball to reach the line After passing over the net is *0.495 s*.

(ii) At the instant the ball strikes the line, calculate :

1. The horizontal component of its velocity.

2. The vertical component of its velocity.

(OCR Physics AS - Module 2821 - June 2007)

© 2008 FXA

9