

UNIT G481	Module 1	1.1 .4	Linear Motion
MOTION DUE TO CONSTANT VELOCITY IN ONE DIRECTION AND A CONSTANT ACCELERATION IN A PERPENDICULAR DIRECTION			

The motion of objects projected at an angle or horizontally from some height above the ground is called PROJECTILE MOTION.

SUMMARY FOR SOLVING PROJECTILE PROBLEMS

```
Resolve the initial velocity into :
HORIZONTAL and VERTICAL COMPONENTS.
```

Assume NEGLIGIBLE AIR RESISTANCE

For the Horizontal Direction :

The HORIZONTAL COMPONENT of velocity remains constant throughout the flight.
horizontal displacement $=$ horizontal velocity x flight time

All PROJECTLIES have the following in common :

- They are given some initial velocity (by kicking, firing etc.)
- Throughout their flight, the only force acting (neglecting air resistance) is their WEIGHT due to gravity, which exerts a constant force acting vertically downwards .

This gives the projectile
CONSTANT DOWNWARD ACCELERATION $=9\left(9.81 \mathrm{~m} \mathrm{~s}^{-2}\right)$

- Neglecting air resistance, the HORIZONTAL COMPONENT OF VELOCITY REMAINS CONSTANT THROUGHOUT THE MOTION and the path followed is a PARABOLA.

For the Vertical Direction :

The acceleration is constant, equal to ' 9 '.

The equations of motion apply.

At the maximum height, vertical velocity $=0$.
When the projectile has returned to the level of its launch point :

- Vertical displacement $=0$
- Final vertical velocity is equal, but oppositely Directed to the initial vertical velocity.

$$
\begin{array}{ll}
v=u+g t & h=\frac{1}{2}(u+v) t \\
h=u t+\frac{1}{2} g t^{2} & v^{2}=u^{2}+2 g h
\end{array}
$$

UNIT G481	Module 1	1.1.4	Linear Motion
-	Practice Questions (2)		
1	A helicopter is flying in a straight line at a speed of $20 \mathrm{~m} \mathrm{~s}^{-1}$ and at a constant height of 180 m. A small object is released from the helicopter and falls to the ground. Assuming air resistance is negligible, calculate :		

(a) The time taken for the object to reach the ground.
(b) The vertical component of velocity of the object when it hits the ground.
(c) The horizontal component of velocity of the object when it hits the ground.
(d) The horizontal displacement of the object in the time taken to reach the ground.

2 During a European Champions League match, a free kick was taken by Steven Gerrard and the ball was projected with a velocity of $20 \mathrm{~m} \mathrm{~s}^{-1}$ at an angle of 35° to the pitch. Assuming that air resistance is negligible, calculate :
(a) The initial vertical and horizontal components of velocity.
(b) The time taken for the ball to reach its maximum height.
(c) The maximum height reached by the ball.
(d) The horizontal displacement of the ball in the time taken to return to the ground.

The diagram above shows the path of a ball that is thrown from point \boldsymbol{A} to point B. The ball reaches its maximum height at point H. The ball is thrown with an initial velocity of $25.0 \mathrm{~m} \mathrm{~s}^{-1}$ at 60° to horizontal. Assume that there is no air resistance.
(a) (i) Show that the vertical component of the initial velocity is $21.7 \mathrm{~m} \mathrm{~s}^{-1}$.
(ii) Calculate the time taken for the ball to reach point H .
(iii) Calculate the displacement from A to B.
(b) For the path of the ball shown in the diagram, draw sketch graphs, with labelled axes but without numerical values, to show the variation of:
(i) The vertical component of the ball's velocity against time.
(ii) The distance travelled along its path against time.
(OCR Physics AS - Module 2821 - May 2008)

UNIT G481
Module 1 1.1.4

